31

Sciencia Acta Xaveriana Volume 8
An International Science Journal No. 1
ISSN. 0976-1152 pp- 31-48

March 2017

EDGE-TO-EDGE DETOUR DISTANCE IN GRAPHS

LLKEERTHI ASIR AND S. ATHISAYANATHAN
Department of Mathematics
St. Xavier’s College (Autonomous),
Palayamkottai - 627 002
Tamilnadu, India.
E-mail : asirsxc@gmail.com and athisxc@gmail.com

Abstract

In this paper, we introduce the edge-to-edge e - €’ path, the edge-
to-edge detour distance D(e, €'), the edge-to- edge e — v detour, the
edge-to-edge detour eccentricity eps(e), the edge-to-edge detour
radius Rs , and the edge-to-edge detour diameter D3 of a connected
graph G, where e, €' are edges in G. We determine these parameters
for some standard graphs. It is shown that R; < D3 < 2R3+1 for every
connected graph G and that every two positive integers a and b with
a < b < 2a+1 are realizable as the edge-to-edge detour radius and the
edge-to-edge detour diameter, respectively, of some connected graph.
Also it is shown that for any two positive integers a, b with a < b are
realizable as the edge-to-edge radius and the edge-to-edge detour
radius, respectively, of some connected graph and also for any two
positive integers a, b with a< b are realizable as the edge-to-edge
diameter and the edge-to-edge detour diameter, respectively, of some
connected graph. Also we introduce the edge-to-edge detour center

Cps(G) and the edge-to-edge detour periphery Pps(G). It is shown that



EDGE-TO-EDGE DETOUR DISTANCE IN GRAPHS 32

the edge-to-edge detour center of every connected graph does not lie
in a single block of G.
Key words : distance, detour distance, edge-to-edge detour distance.
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1. Introduction
By a graph G = (V, E) we mean a finite undirected connected simple
graph. For basic graph theoretic terminologies, we refer to Chartrand
and Zhang [4]. If X € V, then X is the subgraph induced by X. For
example if one is locating an emergency facility like police station, fire
station, hospital, school, college, library, ambulance depot, emergency
care center, etc., then the primary aim is to minimize the distance
between the facility and the location of a possible emergency.

In 1964, Hakimi [6] considered the facility location problems as
vertex-to-vertex distance in graphs. For any two vertices u and v in a
connected graph G, the distance d(u, v) is the length of a shortest u -
v path in G. For a vertex v in G, the eccentricity e(v) of v is the
distance between v and a vertex farthest from v in G. The minimum
eccentricity among the vertices of G is its radius and the maximum
eccentricity is its diameter, denoted by rad(G) and diam(G)
respectively. A vertex v in G is a central vertex if e(v) = rad(G) and
the subgraph induced by the central vertices of G is the center Cen(G)
of G. A vertex v in G is a peripheral vertex if e(v) = diam(G) and the
subgraph induced by the peripheral vertices of G is the periphery
Per(G) of G. If every vertex of G is a central vertex then G is called
self-centered graph.

For example if one is making an election canvass or circular bus

service the distance from the location is to be maximized. In 2005,
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Chartrand et. al. [3] introduced and studied the concepts of detour
distance in graphs. For any two vertices u and v in a connected graph
G, the detour distance D(u, v) is the length of a longest u — v path in
G. For a vertex v in G, the detour eccentricity ep(v) of v is the detour
distance between v and a vertex farthest from v in G. The minimum
detour eccentricity among the vertices of G is its detour radius and
the maximum detour eccentricity is its detour diameter, denoted by
radp(G) and diamp(G) respectively. The detour center, the detour self-
centered and the detour periphery of a graph are defined similar to
the center, the self-centered and the periphery of a graph,
respectively.

For example when a railway line, pipe line or highway is
constructed, the distance between the respective structure and each of
the communities to be served is to be minimized. In a social network
an edge represents two individuals having a common interest. Thus
the centrality with respect to edges have interesting applications in
social networks. In 2010, Santhakumaran [8] introduced the facility
locational problem as edge-to-edge distance in graphs as follows: For
any edges e and €' in a connected graph G, the edge-to-edge distance
is defined by d(e, ') = min{d(u, v) : u € e, v € €'}. The edge-to-edge
eccentricity of e is defined by es(e) = max{d(e, ') : ' € E}. An edge f of
G such that es(e) = d(e, f) is called an edge-to-edge eccentric edge of e.
The edge-to-edge radius r; of G is defined by r; = min{es (e) : e € E}
and the edge-to-edge diameter ds of G is defined by ds; = max{e; (e) : e
€ E}. An edge e for which e; (e) is minimum is called an edge-to-edge
central edge of G and the set of all edge-to-edge central edges of G is
the edge-to-edge center C3(G) of G. An edge e for which es(e) is

maximum is called an edge-to-edge peripheral edge of G and the set
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of all edge-to-edge peripheral edges of G is the edge-to-edge
periphery P3(G) of G. If every edge of G is an edge-to-edge central
edge then G is called the edge-to-edge self-centered graph.

These motivated us to introduce a distance called the edge-to-
edge deotur distance in graphs and investigate certain results related
to edge-to-edge detour distance and other distances in graphs. These
ideas have interesting applications in channel assighment problem in
radio technologies. Also there are useful applications of these
concepts to security based communication network design.
Throughout this paper, G denotes a connected graph with at least

two vertices.

2. Edge-To-Edge Detour Distance

Definition 2.1. Let e and e’ be any two edges in a connected graph G.
An edge-to-edge e — €' path P is a u — v path, where u € eand v € €'
such that P contains no vertices of e and e' other than u and v
respectively. The edge-to-edge detour distance D(e, €') is the length of
a longest e — ' path in G. An e — €' path of length D(e, €') is called an
edge-to-edge e — €' detour or simply e — €' detour. For our
convenience an e — €' path of length d(e, €) is called an edge-to-edge

e — €' geodesic or simply e — e’ geodesic.

Example 2.2. Consider the graph G given in Fig 2.1. For the edges e =
{u,wjand e'={r, v} inG, thepaths P1:w, v;P2:u,z 1, Ps:u, t, 5, %, 2,
rand Ps:u, t,5,%,y,2 r are e — €' paths, while the paths Q;:u, w, v
and Q2 : w, u, z, 1, v are not e— €' paths. Now the edge-to-edge

distance d(e, e') = 1 and the edge-to-edge detour distance D(e, ') = 6.
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Also P1is an e — e’ geodesic and P, is an e — €' detour.

Y
x z
5 r
.t .-L-

U e w
Fig2.1: G

Since the length of an e — e’ path between any two edges e and €' in

a graph G of order n is at most n — 2, we have the following theorem.

Theorem 2.3. For any two edges e and €' in a non-trivial connected
graph G of ordern, 0< d(e, ') < D(e, e)<n - 2.

Remark 2.4. The bounds in the Theorem 2.3 are sharp. For any two
adjacent edges in a path of order n, d(e, €') = D(e, €') = 0 and for any
two adjacent edges in a cycle of order n, d(e, €') < D(e, ') =n-2. If G

is a tree of order n then, d(e, e') = D(e, e')<n-2.

Theorem 2.5. Let Kim (n < m) be a complete bipartite graph with the
partition Vi, V2 of V (Kqm ) such that |Vi | =nand |V2 | =m. Lete
and e' be any two edges in Kym, then D(e, ') = 2n-2.

Definition 2.6. The edge-to-edge detour eccentricity eps(e) of an edge e
in a connected graph G is defined as eps(e) = max {D(e, €') : €' € E}. An

edge f of G such that eps(e) =D(e, f) is called an edge-to-edge detour
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eccentric edge of e. The edge-to-edge detour radius of G is defined as,
Rs = radps (G) = min {eps(e) : e € E} and the edge-to-edge detour
diameter of G is defined as, D3 = diamps (G) = max {eps(e) : e € E}. An
edge e in G is called an edge-to-edge detour central edge if eps(e) = Rs
and the edge-to-edge detour center of G is defined as, Cps (G) = Cenps
(G) ={e € E : eps(e) = Rs} . An edge e in G is called an edge-to-edge
detour peripheral edge if eps(e) = D3 and the edge-to-edge detour
periphery of G is defined as, Pps(G) = Perps(G) = {e €E : eps(e) = D3} .
If every edge of G is an edge-to-edge detour central edge, then G is
called an edge-to-edge detour self centered graph. If G is the edge-to-
edge detour self centered graph then G is called the edge-to-edge
detour periphery.

Example 2.7. For the connected graph G given in Fig. 2.2, the set of all
edges in G are given by, E = {e1 = {v1, v2}, e2={v1, v3}, 3= {v2, v3}, e4

= {Vs ’ V4}, €5 = {Vz ’ V4}, €6 = {V4 ’ V5}}.

U3
L O O
1 2 [ar] Vs
Fig.2.2: G

The edge-to-edge eccentricity es(e), the edge-to-edge detour

eccentricity eps(e) of all the edges of G are given in Table 1.
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€ €1 €3 e3 €1 e5 €g
ese) 1 1 1 1 1 1
epse) 2 2 1 2 2 2

Table 1
The edge-to-edge detour eccentric edge of all the edges of G are given
in Table 2.

Edge e Edge-to-Edge Detour Eccentric Edge

€3,€3,€5, €5 €1

€1, €3, €4, €5 €3

€3, €5 €4

€3, €4 €5

€1,€2,€3 €6
Table 2

The edge-to-edge radius r3 = 1, the edge-to-edge diameter ds; = 1, the
edge-to-edge detour radius R; = 1 and the edge-to-edge detour
diameter D; = 2. Also the edge-to-edge center Cs3(G) ={e1, e, €3, e4, €5},
the edge-to-edge periphery P3(G) = {e1, e, e3, ey, e5}, the edge-to-edge
detour center Cp3(G) = {es} and the edge-to-edge detour periphery
Pps(G) = {e1, e, eq4, es}. It shows that edge-to-edge self-centered graph
need not be edge-to-edge detour self-centered graph.

The edge-to-edge detour radius Rs and the edge-to-edge detour

diameter Ds of some standard graphs are given in Table 3.

G K, P, Cﬂ(n > 4) Hrﬂ(n > 4) Kﬂ.m(?n = ﬂ)
Ry n—2 |22 n—2 n—2 2n —2
3 n—2 n—2 2n — 2

Table 3
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Example 2.8. The complete graph K., the cycle C,, the wheel W, and
the complete bipartite graph K,m are the edge-to-edge detour self

centered graphs.

The following theorem is a consequence of Theorem 2.3.

Theorem 2.9. Let G be a connected graph. Then
(i)0<e;3(e)<eps(e) <n—2forevery edgeeinG.
(i)OSI‘3SR3S1’1—2.

(ii)OSdgﬁDgﬁn—z.

Remark 2.10. The bounds in the Theorem 2.9 (i) are sharp. If G = P5,
then es(e) = eps(e) = O for every edge e in G and if G=C,, then e3(e) =
eps(e) = n - 2 for every edge e in G. Also we note that if G is a tree,
then es(e) = eps(e) for every edge e in G and for the graph G given in

Fig. 2.1, 0 < e3(e) < eps(e) <n — 2, where e ={u, z}.

Theorem 2.11. For every connected graph G, R; < D3 < 2R3+1.

Proof. By definition R3 < Ds. Now let P : uj, uy, . . ., Un1, un be an edge-
to-edge diametral path of length Ds; connecting an edge e and €/,
where e ={u1, uz} and €' ={un1, un}, so that Ds = D(e, €') = D(uz, un1)
and let f be a edge of G such that eps(f) = Rs = D(y, un1) = D(x, w2),
where f = {x, y}. It follows that Ds; = D(e, e') < D(e, f)+D(x, y)+D(f, €') <
R3+1+R3 < 2R3+ 1.

Remark 2.12. The bounds in the Theorem 2.11 are sharp. For the graph G
given in Fig 2.3, it is easy to verify that Rs = 2 and D3 = 5.



LKEERTHI ASIR, S. ATHISAYANATHAN 39

o o - )
us Uo uq b
v2 o
v3 0
Fig. 2.3: G

Ostrand [7] showed that every two positive integers a and b with a <
b <2a are realizable as the radius and diameter respectively of some
connected graph and Chartrand et. al. [3] showed that every two
positive integers a and b with a < b < 2a are realizable as the detour
radius and detour diameter respectively of some connected graph.
Now we have a realization theorem for the edge-to-edge detour
radius and the edge-to-edge detour diameter of some connected

graph.

Theorem 2.13. For each pair a, b of positive integers with a <b < 2a+1,

there exists a connected graph G with R3 =a and D; =b.
Proof. Case 1. a = b. Let G = Cass: ug, U2, . . ., Uas3, w1 be a cycle of
order a + 3. Then eps(ui ui+1 ) =afor1<i<a+2 Thus R3=aand D; =

basa=b.

Case 2. b<2a.Let Casz: w1, U2, ..., Uass, 1 be a cycle of order a + 3
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and Pp-a+1 1 V1, V2,..., Vb-a+1 be a path of order b — a + 1. We construct
the graph G of order b + 3 by identifying the vertex u; of Ca+s and vy
of Py-a+1 as shown in Fig. 2.4. It is easy to verify that eps(u1 u2) = eps(u1
Ua+3) = a. Also eps(ui uiv1) = b—i+2 for 2<i <  (a+3)/2 4 and eps(uiui+1)
=b—-a+i-2 for [ (a+3)/2q<i<a+2. Also eps(vivis1) =atifor1<i<b -
a. In particular, eps(u2 us) = eps(Ua+2 Ua+3) = €p3(Vb-a Vb-a+1) = b. It is easy
to verify that there is no edge e in G with epz(e) < a and there is no
edge e'in G with epz (¢') >b. Thus Rz-=aand Do=basa <b<2a.

Ua 2

Vg Ub—a Vb—a+1

uz

usz

Fig. 2.4: G

Case 3. b = 2a + 1. Construct the graph G as shown in Fig 2.5, it is
easy to verify that ep3(xv1) = a and ep3(Vb-aVba+1) = b. Also there is no
edge e in G with eps(e) < a and there is no edge €' in G with eps(e') > b.
Thus Rs=a and D; = b as b =2a+1.
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Fig.2.5: G

Chartrand et. al. [3] showed that every pair a, b of positive integers
with a < b is realizable as the radius and the detour radius of some
connected graph. Now we have a realization theorem for the edge-to-
edge radius and the edge-to-edge detour radius of some connected

graph.

Theorem 2.14. For each pair a, b of positive integers with a < b, there

exists a connected graph G such that r; =aand R; = b.

Proof. Casel.a=b.LetPr:uj, us, ...,, Ua, Uaeand Pa: vy, vo, ..., Va,
Va+2 be two paths of order a+2. We construct the graph G of order 2a +
4 by joining u; in P1 and v in P> by an edge. Then e3 (u1 v1) = eps(u1 v1)
=a and es(u; ui+1 ) = e3(vi vie1) =a +1ifor 1 <i<a+l. Itis easy to verify
that there is no edge e in G with e3(e) = eps(e) < a. Thusrs=a and Rs =
basa=b.
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Case 2. a < b. We have the following two subcases:

Subcase 1 of Case 2. a = 1. Any complete graph of order Ky« is the
desired graph.

Subcase 2 of Case2.a22. LetP1:uj, w2, ..., Ua Uarzand Qg :vy, vy, ..
., Va, Var2 be two paths of order a + 2. Let P> : w1, wa, . .., Wp-aroand
Q2:21,22, ..., Zb-ax2be two paths of order b — a + 2. We construct the
graph G of order 2b + 2 as follows: (i) identify the vertices u; in P,
with wi in P> and also identify the vertices vi in Q; with z; in Qa (ii)
identify the vertices us in P1 with Wy-a+2 in P2 and also identify the
vertices zp-a+2in Q2 with vs in Qq (iii) join each vertex w; (2<i<b-a+
1) in P> with uz in Py and join each vertex z; 2<i<b -a+ 1) in Q
with vz in Q1 (iv) join wp in Py with vq in Qi . The resulting graph G is

shown in Fig. 2.6.
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Fig. 2.6: G
It is easy to verify that

ez(uqvy) =

eg(uul_f_l)—a—l—z if 1<i<a+1

es(vivip1)=a+1 if 1<i<a+1
at+1, ifi=1

es(wiwit1) = a + 2, if i=2

a—+ 3, if 3<i<b—a+1
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a+1, it i=1
es(ziziy1) =qa+2, if i=2

a—+ 3, if 3<i<b—a+1
es(ugwi) =a+2 if 1<i<b-—a+1
es(vez;)=a+2 if i<i<b-—a+1
ep,(ujvy) =b

( et i i=1

ep. (uiir) =

P\ W—ati if2<i<a+l
b+1, i i—1

ep, (V;v;41) = ' . '

s (Vivig1) {25_34_@, if 2<i<a+1

(& iy =

Dy (WiWi 1 2b—a + 2, if 2<2<b—a+1
M—a+2 if 2<i<b—a+1

epg(ugw;) =b+i if 1<i<b—a+1

eps(voz) =b+i if 1<i<b—a+1

ep (zizi41) =

It is easy to verify that there is no edge e in G with e3(e) < a and eps(e)
<b.Thusrs=aand Rs=basa<b.

Chartrand et. al. [3] showed that every pair a, b of positive integers
with a < b is realizable as the diameter and the detour diameter of
some connected graph. Now we have a realization theorem for the
edge-to-edge diameter and the edge-to-edge detour diameter of some

connected graph.

Theorem 2.15. For any two positive integers a, b with a < b, there

exists a connected graph G such that d; =a and D; = b.

Proof. Case 1. a=b. Let Pav2: 11, Uy, . . ., , Ua+2, Uav3 be a path of order a

+ 3. Then e3(u; uiv1) = eps(ui uiw1) =a—i+2for1 <i< (a+2)/2q and
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e3(ui uiv1) = eps (Wi wir1) = i — 2 for (a+2)/2q9<i<a + 1. In particular
e3(w u2) = eps(1 U2) = €3 (Ua+2 Ua+3) = ep3(Ua+2 Uas3) = a. It is easy to
verify that there is no edge e in G with es(e) = eps(e) > a. Thus ds= a
and Ds=basa=b.

Case 2. a < b. We have the following two subcases:

Subcase lof Case 2. a = 1. Any complete graph of order Ky« is the
desired graph.

Subcase 2 of Case 2. a = 2. Let G be the graph obtained by joining any
one vertex of the complete graph K, of order b with any vertex of a
path Ps : x1, X2, x3, X4 of order 4. It is easy to verify that es(xsxs) = a and

eps(xsx4) = b. Also there is no edge e in G with es(e) > a and eps(e) > b.

Subcase 3 of Case 2. a>3. Let P1: ui, u2, ..., Uas1, Uar2 be a path of
ordera+1.Let P2:wy, w2, ..., Wh-ar2be a path of order b —a + 2. Let
Ps : x1, x2 be a path of order 2. We construct the graph G of order b +
3 as follows: (i) identify the vertices u; in Py, w1 in P> with x; in Psand
identify the vertices us in Py with Wy-a+2 in P (ii) join each vertex w; (2
<i<b-a+1)in P, with uz in P; . The resulting graph G is shown in
Fig. 2.7.



EDGE-TO-EDGE DETOUR DISTANCE IN GRAPHS 46

wsy

Wh—a41

T Ug1 Ua42
O IR s T—
g (%)
L2
Fig 2.7
It is easy to verify that
e3(z179) = a
E’.DS(I‘ll‘z) =b
a—i, if 1<i< |5
63(uiﬂi+1) =9. . a LZJ
i—1, if bj<zga+1
b—1, it i=1
eps(Wtip1) =¢b—a+i—1, if 2<i<a for b—a+i—1>a—i
a—i, if 2<i<a for b—a+i—-1<a-—1

es(ugw;) =a—1 if 2<i<b-a+1
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b—zq, if 1<i<b—-—a+1 for b—1i>1¢
i—1, if 1<i<b—a+1 for b—i<i
a, f1<i<b—a-1

a—1, if i=b—a

ep; (uzwi) = {

es(Witiy1) = a— 2, if i=b—a+1 for a—2>a
a—1, if i=b—a+1 for a—2<a-1
h—1, if 1<i<b—a
eps(wwip1)=4b—a+1, if i=b—a+1 for b—a+2>a—2
a—2, if i=b—a4+1 for b—a+2<a-—2

It is easy to verify that there is no edge e in G with es(e) > a and eps(e)
>b. Thusds=aand Ds=basa<b.

Problem 2.16. Characterize the graphs such that Cps(G) = G3(G)
Problem 2.17. Characterize the graphs such that Pp3(G) = P5(G)
Problem 2.18. Characterize the graphs such that Cps(G) = Pps(G)
Problem 2.19. Is every graph an edge-to-edge detour center of some
graph?

Remark 2.20. The edge-to-edge detour center of every connected
graph does not lie in a single block of G. For the Path Pa+1 of order 2n
+ 1, the edge-to-edge detour center is always P;, which does not lie in

a single block.
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