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Abstract 

       In this paper, we introduce the edge-to-edge e – e′ path, the edge-

to-edge detour distance D(e, e′), the edge-to- edge e − v detour, the 
edge-to-edge detour eccentricity eD3(e), the edge-to-edge detour 

radius R3 , and the edge-to-edge detour diameter D3 of a connected 

graph G, where e, e′ are edges in G. We determine these parameters 

for some standard graphs. It is shown that R3 ≤ D3 ≤ 2R3+1 for every 

connected graph G and that every two positive integers a and b with 

a ≤ b ≤ 2a+1 are realizable as the edge-to-edge detour radius and the 

edge-to-edge detour diameter, respectively, of some connected graph. 

Also it is shown that for any two positive integers a, b with a ≤ b are 
realizable as the edge-to-edge radius and the edge-to-edge detour 

radius, respectively, of some connected graph and also for any two 

positive integers a, b with a≤ b are realizable as the edge-to-edge 

diameter and the edge-to-edge detour diameter, respectively, of some 

connected graph. Also we introduce the edge-to-edge detour center 

CD3(G) and the edge-to-edge detour periphery PD3(G). It is shown that 
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the edge-to-edge detour center of every connected graph does not lie 

in a single block of G. 
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1. Introduction 

By a graph G = (V, E) we mean a finite undirected connected simple 
graph. For basic graph theoretic terminologies, we refer to Chartrand 

and Zhang [4]. If X ⊆ V, then X is the subgraph induced by X. For 

example if one is locating an emergency facility like police station, fire 
station, hospital, school, college, library, ambulance depot, emergency 

care center, etc., then the primary aim is to minimize the distance 

between the facility and the location of a possible emergency. 

     In 1964, Hakimi [6] considered the facility location problems as 

vertex-to-vertex distance in graphs. For any two vertices u and v in a 

connected graph G, the distance d(u, v) is the length of a shortest u − 
v path in G. For a vertex v in G, the eccentricity e(v) of v is the 

distance between v and a vertex farthest from v in G. The minimum 

eccentricity among the vertices of G is its radius and the maximum 

eccentricity is its diameter, denoted by rad(G) and diam(G) 

respectively. A vertex v in G is a central vertex if e(v) = rad(G) and 

the subgraph induced by the central vertices of G is the center Cen(G) 

of G. A vertex v in G is a peripheral vertex if e(v) = diam(G) and the 

subgraph induced by the peripheral vertices of G is the periphery 

Per(G) of G. If every vertex of G is a central vertex then G is called 

self-centered graph. 

     For example if one is making an election canvass or circular bus 

service the distance from the location is to be maximized. In 2005, 



I.KEERTHI ASIR, S. ATHISAYANATHAN                                                                                         33 

Chartrand et. al. [3] introduced and studied the concepts of detour 

distance in graphs. For any two vertices u and v in a connected graph 

G, the detour distance D(u, v) is the length of a longest u − v path in 
G. For a vertex v in G, the detour eccentricity eD(v) of v is the detour 

distance between v and a vertex farthest from v in G. The minimum 

detour eccentricity among the vertices of G is its detour radius and 

the maximum detour eccentricity is its detour diameter, denoted by 

radD(G) and diamD(G) respectively. The detour center, the detour self-

centered and the detour periphery of a graph are defined similar to 
the center, the self-centered and the periphery of a graph, 

respectively. 

     For example when a railway line, pipe line or highway is 

constructed, the distance between the respective structure and each of 

the communities to be served is to be minimized. In a social network 

an edge represents two individuals having a common interest. Thus 

the centrality with respect to edges have interesting applications in 

social networks. In 2010, Santhakumaran [8] introduced the facility 

locational problem as edge-to-edge distance in graphs as follows: For 

any edges e and e′ in a connected graph G, the edge-to-edge distance 

is defined by d(e, e′) = min{d(u, v) : u ∈ e, v ∈ e′}. The edge-to-edge 

eccentricity of e is defined by e3(e) = max{d(e, e′) : e′ ∈ E}. An edge f of 

G such that e3(e) = d(e, f) is called an edge-to-edge eccentric edge of e. 

The edge-to-edge radius r3 of G is defined by r3 = min{e3 (e) : e ∈ E} 

and the edge-to-edge diameter d3 of G is defined by d3 = max{e3 (e) : e ∈ E}. An edge e for which e3 (e) is minimum is called an edge-to-edge 

central edge of G and the set of all edge-to-edge central edges of G is 

the edge-to-edge center C3(G) of G. An edge e for which e3(e) is 

maximum is called an edge-to-edge peripheral edge of G and the set 
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of all edge-to-edge peripheral edges of G is the edge-to-edge 

periphery P3(G) of G. If every edge of G is an edge-to-edge central 

edge then G is called the edge-to-edge self-centered graph. 

         These motivated us to introduce a distance called the edge-to-

edge deotur distance in graphs and investigate certain results related 

to edge-to-edge detour distance and other distances in graphs. These 

ideas have interesting applications in channel assignment problem in 

radio technologies. Also there are useful applications of these 

concepts to security based communication network design. 

Throughout this paper, G denotes a connected graph with at least 

two vertices. 

 

2. Edge-To-Edge Detour Distance 

 

Definition 2.1. Let e and e′ be any two edges in a connected graph G. 
An edge-to-edge e − e′ path P is a u − v path, where u ∈ e and v ∈ e′ 
such that P contains no vertices of e and e′ other than u and v 
respectively. The edge-to-edge detour distance D(e, e′) is the length of 
a longest e − e′ path in G. An e − e′ path of length D(e, e′) is called an 
edge-to-edge e − e′ detour or simply e − e′ detour. For our 
convenience an e − e′ path of length d(e, e′) is called an edge-to-edge  

e − e′ geodesic or simply e − e′ geodesic. 
 

Example 2.2. Consider the graph G given in Fig 2.1. For the edges e = 

{u, w} and e′= {r, v}  in G, the paths P1 : w, v; P2 : u, z, r; P3 : u, t, s, x, z, 

r and P4 : u, t, s, x, y, z, r  are e − e′ paths, while the paths Q1 : u, w, v 

and Q2 : w, u, z, r, v are not e− e′ paths. Now the edge-to-edge 

distance d(e, e′) = 1 and the edge-to-edge detour distance D(e, e′) = 6. 



I.KEERTHI ASIR, S. ATHISAYANATHAN                                                                                         35 

Also P1 is an e − e′ geodesic and P4 is an e − e′ detour.  

 

Fig 2.1: G 

 

   Since the length of an e − e′ path between any two edges e and e′ in 
a graph G of order n is at most n − 2, we have the following theorem. 
 

Theorem 2.3. For any two edges e and e′ in a non-trivial connected 

graph G of order n, 0 ≤ d(e, e′) ≤ D(e, e′) ≤ n − 2. 
 

Remark 2.4. The bounds in the Theorem 2.3 are sharp. For any two 

adjacent edges in a path of order n, d(e, e′) = D(e, e′) = 0 and for any 
two adjacent edges in a cycle of order n, d(e, e′) < D(e, e′) = n−2. If G 
is a tree of order n then, d(e, e′) = D(e, e′)<n-2. 

 

Theorem 2.5. Let Kn,m (n < m) be a complete bipartite graph with the 

partition V1, V2 of V (Kn,m ) such that |V1 | = n and |V2 | = m. Let e 

and e′ be any two edges in Kn,m , then D(e, e′) = 2n−2. 
 

Definition 2.6. The edge-to-edge detour eccentricity eD3(e) of an edge e 

in a connected graph G is defined as eD3(e) = max {D(e, e′) : e′ ∈ E}. An 

edge f of G such that eD3(e) =D(e, f) is called an edge-to-edge detour 
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eccentric edge of e. The edge-to-edge detour radius of G is defined as, 
R3 = radD3 (G) = min {eD3(e) : e ∈ E} and the edge-to-edge detour 

diameter of G is defined as, D3 = diamD3 (G) = max {eD3(e) : e ∈ E}. An 

edge e in G is called an edge-to-edge detour central edge if eD3(e) = R3 

and the edge-to-edge detour center of G is defined as, CD3 (G) = CenD3 

(G) = {e ∈ E : eD3(e) = R3} . An edge e in G is called an edge-to-edge 

detour peripheral edge if eD3(e) = D3 and the edge-to-edge detour 

periphery of G is defined as, PD3(G) = PerD3(G) = {e ∈E : eD3(e) = D3} . 

If every edge of G is an edge-to-edge detour central edge, then G is 

called an edge-to-edge detour self centered graph. If G is the edge-to-

edge detour self centered graph then G is called the edge-to-edge 

detour periphery. 

 

Example 2.7. For the connected graph G given in Fig. 2.2, the set of all 

edges in G are given by, E = {e1 = {v1 , v2}, e2 = {v1 , v3}, e3 = {v2 , v3}, e4 

= {v3 , v4}, e5 = {v2 , v4}, e6 = {v4 , v5}}. 

 

 

 

Fig. 2.2: G 

The edge-to-edge eccentricity e3(e), the edge-to-edge detour 

eccentricity eD3(e) of all the edges of G are given in Table 1. 
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Table 1 

The edge-to-edge detour eccentric edge of all the edges of G are given 

in Table 2. 

 

Table 2 

The edge-to-edge radius r3 = 1, the edge-to-edge diameter d3 = 1, the 

edge-to-edge detour radius R3 = 1 and the edge-to-edge detour 

diameter D3 = 2. Also the edge-to-edge center C3(G) ={e1, e2, e3, e4, e5}, 

the edge-to-edge periphery P3(G) = {e1, e2, e3, e4, e5}, the edge-to-edge 

detour center CD3(G) = {e3} and the edge-to-edge detour periphery 

PD3(G) = {e1, e2, e4, e5}. It shows that edge-to-edge self-centered graph 

need not be edge-to-edge detour self-centered graph. 

 

The edge-to-edge detour radius R3 and the edge-to-edge detour 

diameter D3 of some standard graphs are given in Table 3. 

 

Table 3 
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Example 2.8. The complete graph Kn, the cycle Cn, the wheel Wn and 

the complete bipartite graph Kn,m are the edge-to-edge detour self 

centered graphs. 

 

The following theorem is a consequence of Theorem 2.3. 

 

Theorem 2.9. Let G be a connected graph. Then 

  (i) 0 ≤ e3 (e) ≤ eD3 (e) ≤ n − 2 for every edge e in G. 
  (i) 0 ≤ r3 ≤ R3 ≤ n − 2. 
  (ii) 0 ≤ d3 ≤ D3 ≤ n − 2. 
 

Remark 2.10. The bounds in the Theorem 2.9 (i) are sharp. If G = P3, 

then e3(e) = eD3(e) = 0 for every edge e in G and if G=Cn, then e3(e) = 

eD3(e) = n – 2 for every edge e in G. Also we note that if G is a tree, 

then e3(e) = eD3(e) for every edge e in G and for the graph G given in 

Fig. 2.1, 0 < e3(e) < eD3(e) < n − 2, where e ={u, z}. 
 

Theorem 2.11. For every connected graph G, R3 ≤ D3 ≤ 2R3+1. 

 

Proof. By definition R3 ≤ D3. Now let P : u1, u2, . . . , un-1, un be an edge-

to-edge diametral path of length D3 connecting an edge e and e′, 
where e ={u1, u2} and e′ ={un-1, un}, so that D3 = D(e, e′) = D(u2, un-1) 

and let f be a edge of G such that eD3(f) = R3 = D(y, un-1) = D(x, u2), 

where f = {x, y}. It follows that D3 = D(e, e′) ≤ D(e, f)+D(x, y)+D(f, e′) ≤ 
R3+1+R3 ≤ 2R3 + 1. 

 

Remark 2.12. The bounds in the Theorem 2.11 are sharp. For the graph G 

given in Fig 2.3, it is easy to verify that R3 = 2 and D3 = 5. 
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Fig. 2.3: G 

 

 

Ostrand [7] showed that every two positive integers a and b with a ≤ 
b ≤2a are realizable as the radius and diameter respectively of some 
connected graph and Chartrand et. al. [3] showed that every two 

positive integers a and b with a ≤ b ≤ 2a are realizable as the detour 
radius and detour diameter respectively of some connected graph. 

Now we have a realization theorem for the edge-to-edge detour 

radius and the edge-to-edge detour diameter of some connected 

graph. 

 

Theorem 2.13. For each pair a, b of positive integers with a ≤ b ≤ 2a+1, 
there exists a connected graph G with R3 = a and D3 = b. 

 

Proof. Case 1. a = b. Let G = Ca+3: u1, u2 , . . . , ua+3, u1 be a cycle of 

order a + 3. Then eD3(ui ui+1 ) = a for 1 ≤ i ≤ a + 2. Thus R3 = a and D3 = 

b as a = b. 

 

Case 2. b ≤ 2a. Let Ca+3 : u1 , u2 , . . . , ua+3, u1 be a cycle of order a + 3 
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and Pb−a+1 : v1, v2,..., vb−a+1 be a path of order b − a + 1. We construct 
the graph G of order b + 3 by identifying the vertex u1 of Ca+3 and v1 

of Pb−a+1 as shown in Fig. 2.4. It is easy to verify that eD3(u1 u2) = eD3(u1 

ua+3) = a. Also eD3(ui ui+1) = b−i+2 for 2 ≤ i ≤ ┌ (a+3)/2 ┐and eD3(uiui+1) 

= b−a+i−2 for ┌ (a+3)/2 ┐< i ≤ a+2. Also eD3(vivi+1) = a+i for 1 ≤ i ≤ b − 
a. In particular, eD3(u2 u3) = eD3(ua+2 ua+3) = eD3(vb−a vb−a+1) = b. It is easy 

to verify that there is no edge e in G with eD2(e) < a and there is no 

edge e′ in G with eD2 (e′ ) > b. Thus R2 = a and D2 = b as a < b ≤ 2a. 
 

 

 

Fig. 2.4: G 

 

Case 3. b = 2a + 1. Construct the graph G as shown in Fig 2.5, it is 

easy to verify that eD3(xv1) = a and eD3(vb-avb-a+1) = b. Also there is no 

edge e in G with eD3(e) < a and there is no edge e′ in G with eD3(e′) > b. 

Thus R3=a and D3 = b as b =2a+1.  
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Fig. 2.5: G 

 

Chartrand et. al. [3] showed that every pair a, b of positive integers 

with a ≤ b is realizable as the radius and the detour radius of some 
connected graph. Now we have a realization theorem for the edge-to-

edge radius and the edge-to-edge detour radius of some connected 

graph. 

 

Theorem 2.14. For each pair a, b of positive integers with a ≤ b, there 
exists a connected graph G such that r3 = a and R3 = b. 

 

Proof. Case 1. a = b. Let P1 : u1, u2, . . . , , ua , ua+2 and P2 : v1, v2, . . . , va, 

va+2 be two paths of order a+2. We construct the graph G of order 2a + 

4 by joining u1 in P1 and v1 in P2 by an edge. Then e3 (u1 v1) = eD3(u1 v1) 

= a and e3(ui ui+1 ) = e3(vi  vi+1) = a + i for 1 ≤ i ≤ a+1. It is easy to verify 
that there is no edge e in G with e3(e) = eD3(e) < a. Thus r3 = a and R3 = 

b as a = b. 
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Case 2. a < b. We have the following two subcases: 

 

Subcase 1 of Case 2. a = 1. Any complete graph of order Kb+2 is the 

desired graph. 

 

Subcase 2 of Case 2. a ≥ 2. Let P1 : u1, u2 , . . . ,  ua, ua+2 and Q1 :v1, v2, . . 

. , va, va+2  be two paths of order a + 2. Let P2 : w1 , w2 , . . . , wb−a+2 and 

Q2 : z1 , z2 , . . . , zb−a+2 be two paths of order b − a + 2. We construct the 
graph G of order 2b + 2 as follows: (i) identify the vertices u1 in P1 

with w1 in P2 and also identify the vertices v1 in Q1 with z1 in Q2 (ii) 

identify the vertices u3 in P1 with wb−a+2 in P2 and also identify the 

vertices zb−a+2 in Q2 with v3 in Q1 (iii) join each vertex wi (2 ≤ i ≤ b − a + 
1) in P2 with u2 in P1 and join each vertex zi (2 ≤ i ≤ b − a + 1) in Q2 

with v2 in Q1 (iv) join u1 in P1 with v1 in Q1 . The resulting graph G is 

shown in Fig. 2.6.  
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Fig. 2.6: G 

It is easy to verify that  
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It is easy to verify that there is no edge e in G with e3(e) < a and eD3(e) 

< b. Thus r3 = a and R3 = b as a < b. 

   Chartrand et. al. [3] showed that every pair a, b of positive integers 

with a ≤ b is realizable as the diameter and the detour diameter of 
some connected graph. Now we have a realization theorem for the 

edge-to-edge diameter and the edge-to-edge detour diameter of some 

connected graph. 

 

Theorem 2.15. For any two positive integers a, b with a ≤ b, there 
exists a connected graph G such that d3 = a and D3 = b. 

 

Proof. Case 1. a = b. Let Pa+2 : u1, u2, . . . , , ua+2, ua+3 be a path of order a 

+ 3. Then e3(ui ui+1) = eD3(ui ui+1) = a − i + 2 for 1 ≤ i ≤ ┌(a+2)/2┐ and 
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e3(ui ui+1) = eD3 (ui ui+1) = i − 2 for ┌(a+2)/2┐< i ≤ a + 1. In particular 
e3(u1 u2) = eD3(u1 u2) = e3 (ua+2 ua+3) = eD3(ua+2 ua+3) = a. It is easy to 

verify that there is no edge e in G with e3(e) = eD3(e) > a. Thus d3= a 

and D3= b as a = b. 

Case 2. a < b. We have the following two subcases: 

 

Subcase 1of Case 2. a = 1. Any complete graph of order Kb+2 is the 

desired graph. 

 

Subcase 2 of Case 2. a = 2. Let G be the graph obtained by joining any 

one vertex of the complete graph Kb of order b with any vertex of a 

path P3 : x1, x2, x3, x4 of order 4. It is easy to verify that e3(x3x4) = a and 

eD3(x3x4) = b. Also there is no edge e in G with e3(e) > a and eD3(e) > b. 

 

Subcase 3 of Case 2. a ≥ 3. Let P1 : u1, u2 , . . . , ua+1 , ua+2 be a path of 

order a + 1. Let P2 : w1, w2 , . . . , wb−a+2 be a path of order b − a + 2. Let 
P3 : x1 , x2 be a path of order 2. We construct the graph G of order b + 

3 as follows: (i) identify the vertices u1 in P1, w1 in P2 with x1 in P3 and 

identify the vertices u3 in P1 with wb−a+2 in P2 (ii) join each vertex wi (2 

≤ i ≤ b − a + 1) in P2 with u2 in P1 . The resulting graph G is shown in 

Fig. 2.7.  
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Fig 2.7 

 

It is easy to verify that 
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It is easy to verify that there is no edge e in G with e3(e) > a and eD3(e) 

> b. Thus d3 = a and D3 = b as a < b. 

Problem 2.16. Characterize the graphs such that CD3(G) = C3(G) 

Problem 2.17. Characterize the graphs such that PD3(G) = P3(G) 

Problem 2.18. Characterize the graphs such that CD3(G) = PD3(G) 

Problem 2.19. Is every graph an edge-to-edge detour center of some 

graph? 

Remark 2.20. The edge-to-edge detour center of every connected 

graph does not lie in a single block of G. For the Path P2n+1 of order 2n 

+ 1, the edge-to-edge detour center is always P3, which does not lie in 

a single block. 
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